Exercise 24

Repeat Exercise 23 for the data given in Exercise 22. What do you observe?

Solution

The initial boundary value problem from Exercise 22 is

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L,-\infty<t<\infty \\
& u(x, 0)=\frac{1}{2} \sin 2 \pi x+\frac{1}{4} \sin 4 \pi x \\
& \frac{\partial u}{\partial t}(x, 0)=0 \\
& u(0, t)=0 \\
& u(L, t)=0,
\end{aligned}
$$

and its solution is

$$
u(x, t)=\frac{1}{2} \sin \frac{2 \pi x}{L} \cos \frac{2 \pi c t}{L}+\frac{1}{4} \sin \frac{4 \pi x}{L} \cos \frac{4 \pi c t}{L} .
$$

Below is a plot of u versus x over $0<x<1$ at several times with $c=1$ and $L=1$.

Below are plots of $u\left(x_{0}, t\right)$ versus t with $c=1$ and $L=1$ for $x_{0}=\frac{1}{4}$,

for $x_{0}=\frac{1}{3}$,

for $x_{0}=\frac{1}{2}$,

and for $x_{0}=\frac{3}{4}$.

